<<<<<<< HEAD ======= >>>>>>> 1f72b2c38317bbf9e22e15671a199f851eaded2e Nucleotide diversity

1 Load libraries

library(here)
library(tidyverse)
library(karyoploteR)
library(plotly)
library(circlize)
library(GGally)
library(viridis)

2 Snakemake pipeline to process VCF and extract data

https://github.com/brettellebi/mikk_genome/tree/master/code/snakemake/nucleotide_diversity

Steps

  1. Filter MIKK panel VCF for non-sibling lines (N = 63).
  2. Use VCFtools’s --window-pi to calculate nucleotide divergence in different-sized windows.
  3. Use bcftools to extract MQ from INFO field.

3 Process data

Data location: /nfs/research/birney/users/ian/mikk_genome/nucleotide_divergence

3.1 Read in data

3.1.1 MIKK

# Set location of data
in_dir = "/nfs/research/birney/users/ian/mikk_genome/nucleotide_divergence/mikk/all"

in_files = list.files(in_dir, full.names = T)
dat_list = lapply(in_files, function(IN_FILE) {
  # Read in 
  readr::read_delim(IN_FILE,
                    delim = "\t",
                    col_types = c("ciiid")) %>% 
    # Remove MT
    dplyr::filter(CHROM != "MT") %>% 
    # Make CHR an integer
    dplyr::mutate(CHROM = as.integer(CHROM)) %>% 
    # Create middle of bin
    dplyr::mutate(BIN_MID = ((BIN_END - BIN_START - 1) / 2) + BIN_START )
})
names(dat_list) = basename(in_files) %>%
  str_remove(".windowed.pi")

3.1.2 Wild Kiyosu

# Set location of data
in_dir = "/nfs/research/birney/users/ian/mikk_genome/nucleotide_divergence/wild_kiyosu"

in_files = list.files(in_dir, full.names = T)
wk_list = lapply(in_files, function(IN_FILE) {
  # Read in 
  readr::read_delim(IN_FILE,
                    delim = "\t",
                    col_types = c("ciiid")) %>% 
    # Remove MT
    dplyr::filter(CHROM != "MT") %>% 
    # Make CHR an integer
    dplyr::mutate(CHROM = as.integer(CHROM)) %>% 
    # Create middle of bin
    dplyr::mutate(BIN_MID = ((BIN_END - BIN_START - 1) / 2) + BIN_START )
})
names(wk_list) = basename(in_files) %>%
  str_remove(".windowed.pi")

4 Karyoplot

4.1 Set up scaffold

med_chr_lens = read.table(here::here("data",
                                     "Oryzias_latipes.ASM223467v1.dna.toplevel.fa_chr_counts.txt"),
                          col.names = c("chr", "end"))
# Add start
med_chr_lens$start = 1
# Reorder
med_chr_lens = med_chr_lens %>% 
  dplyr::select(chr, start, end) %>% 
  # remove MT
  dplyr::filter(chr != "MT") %>% 
  # convert to numeric
  dplyr::mutate(chr = as.integer(chr)) %>% 
  # order
  dplyr::arrange(chr)

# Create custom genome 
med_genome = regioneR::toGRanges(med_chr_lens)

4.2 Plot

4.2.1 Compare effect of bin width on noise

# Test with ggplot
dat_list$`1000000` %>% 
  ggplot() +
    geom_line(aes(BIN_MID, PI)) +
    facet_grid(cols = vars(CHROM))

dat_list$`500000` %>% 
  ggplot() +
    geom_line(aes(BIN_MID, PI)) +
    facet_grid(cols = vars(CHROM))

dat_list$`100000` %>% 
  ggplot() +
    geom_line(aes(BIN_MID, PI)) +
    facet_grid(cols = vars(CHROM))

## Get max Y
round.choose <- function(x, roundTo, dir = 1) {
  if(dir == 1) {  ##ROUND UP
    x + (roundTo - x %% roundTo)
  } else {
    if(dir == 0) {  ##ROUND DOWN
      x - (x %% roundTo)
    }
  }
}
y_max = round.choose(max(dat_list$`1000000`$PI), 0.01, 1)
# set file name
file_name = paste("20210930_", "1Mb", ".png", sep = "")
file_out = here::here("docs/plots/nucleotide_diversity", file_name)

png(file=file_out,
    width=13000,
    height=1000,
    units = "px",
    res = 300)

# Plot ideogram
kp = karyoploteR::plotKaryotype(med_genome, plot.type = 5)

# Add base numbers 
karyoploteR::kpAddBaseNumbers(kp, tick.dist = 5000000, cex = 0.7)

# Set y-axis limits
karyoploteR::kpAxis(kp, ymin=0, ymax=y_max )

# Add lines
lwd = 1
karyoploteR::kpLines(kp,
                     chr = dat_list$`1000000`$CHROM,
                     x = dat_list$`1000000`$BIN_MID,
                     y = dat_list$`1000000`$PI,
                     ymax = y_max,
                     r0=0, r1 = 1,
                     lwd = lwd)



dev.off()  
file_out = here::here("docs/plots/nucleotide_diversity/20210930_1Mb.png")
knitr::include_graphics(file_out)

5 Circos

5.1 Get repeats data

repeats_file = "/nfs/research/birney/users/ian/mikk_genome/repeats/medaka_hdrr_repeats.fixed.gff"

hdrr_reps = readr::read_delim(repeats_file,
                              delim = "\t",
                              col_names = F,
                              skip = 3,
                              comment = "",
                              quote = "") %>%
  # Remove empty V8 column
  dplyr::select(-X8) %>% 
  # Get class of repeat from third column
  dplyr::mutate(class = stringr::str_split(X3, pattern = "#", simplify = T)[, 1]) %>% 
  # Rename columns
  dplyr::rename(chr = X1, tool = X2, class_full = X3, start = X4, end = X5, percent = X6, strand = X7, info = X9)

# Find types of class other than "(GATCCA)n" types
class_types = unique(hdrr_reps$class[grep(")n", hdrr_reps$class, invert = T)])

hdrr_reps = hdrr_reps %>%
  # NA for blanks
  dplyr::mutate(class = dplyr::na_if(class, "")) %>%
  # "misc" for others in "(GATCCA)n" type classes
  dplyr::mutate(class = dplyr::if_else(!class %in% class_types, "Miscellaneous", class)) %>%
  # rename "Simple_repeat"
  dplyr::mutate(class = dplyr::recode(class, "Simple_repeat" = "Simple repeat")) %>% 
  # filter out NA in `chr` (formerly MT)
  dplyr::filter(!is.na(chr))

5.2 Calculate proportion of bin covered by repeats

5.2.1 Bin intevals

# Create GRanges object with bins
bin_length = "1000000"

bin_intervals = dat_list[[bin_length]] %>% 
  dplyr::select(CHROM, BIN_START, BIN_END) %>% 
  # split into list by chromosome
  split(., f = .$CHROM)

# Replace END pos of final bin for each chromsome with actual end pos
bin_intervals = lapply(1:length(bin_intervals), function(CHR){
  # Get end position for target chromosome
  end_pos = med_chr_lens %>% 
    dplyr::filter(chr == CHR) %>% 
    dplyr::pull(end)
  # Replace final bin end position
  out = bin_intervals[[CHR]]
  out$BIN_END[nrow(out)] = end_pos
  
  return(out)
}) %>% 
  dplyr::bind_rows()

# Convert to data frame
bin_intervals = as.data.frame(bin_intervals)

# Convert to GRanges
bin_ranges = regioneR::toGRanges(bin_intervals)

5.2.2 Repeats

# Convert `hdrr_reps` to GRanges
hdrr_ranges = GenomicRanges::makeGRangesFromDataFrame(hdrr_reps,
                                                      keep.extra.columns = T,
                                                      seqnames.field = "chr",
                                                      start.field = "start",
                                                      end.field = "end")

# Get non-overlapping regions
hdrr_covered = GenomicRanges::disjoin(hdrr_ranges)

5.2.3 Find quantity of repeats overlapping bins

overlaps = GenomicRanges::findOverlaps(bin_ranges, hdrr_covered)

# Split into list by bin
overlaps_list = lapply(unique(overlaps@from), function(BIN){
  out = list()
  # Get indexes of all repeat ranges overlapping the target BIN
  out[["hits"]] = overlaps[overlaps@from == BIN]@to
  # Extract those ranges from `hdrr_ranges`
  out[["range_hits"]] = hdrr_covered[out[["hits"]]]
    # Get number bases covered by each range
  out[["widths"]] = out[["range_hits"]] %>% 
    GenomicRanges::width(.) 
  # Get summed widths
  out[["summed"]] = out[["widths"]] %>% 
    # Get total bases covered in bin
    sum(.)
  
  return(out)
})
  
overlaps_vec = purrr::map(overlaps_list, function(BIN){
  BIN[["summed"]]
}) %>% 
  unlist(.)

# Add as column to `bin_intervals`
bin_intervals$REPEAT_COV = overlaps_vec

# Caclulate proportion
bin_intervals = bin_intervals %>%
  dplyr::mutate(REPEAT_PROP = REPEAT_COV / (BIN_END - BIN_START + 1))

5.3 Read in mapping quality scores

in_file = "/nfs/research/birney/users/ian/mikk_genome/mapping_quality/mapping_quality.csv"

mq_df = readr::read_csv(in_file,
                        col_names = c("CHROM", "POS", "MQ"),
                        col_types = c("cid")) %>% 
  # remove 'MT'
  dplyr::filter(!CHROM == "MT") %>% 
  # make CHROM integer
  dplyr::mutate(CHROM = as.integer(CHROM))

# Bin and get means
mq_list = mq_df %>% 
  split(., f = .$CHROM)

# Bin into 1 Mb intervals
binned_mq_list = purrr::map(mq_list, function(CHR){
  # Set intervals
  intervals = seq(1, max(CHR$POS), by = 1000000)
  # add final length
  if (max(intervals) != max(CHR$POS)) {
    intervals = c(intervals, max(CHR$POS))
  }
  # bin
  CHR = CHR %>% 
    dplyr::mutate(BIN = cut(POS,
                            breaks = intervals,
                            labels = F,
                            include.lowest = T))
})

# calculate mean MQ within each bin
mean_mq = purrr::map(binned_mq_list, function(CHR){
  CHR %>% 
    # replace Inf with NA
    dplyr::mutate(MQ = dplyr::na_if(MQ, Inf)) %>% 
    # Group by BIN
    dplyr::group_by(BIN) %>% 
    # Calculate mean MQ within each bin
    dplyr::summarise(MEAN_MQ = mean(MQ, na.rm = T))
}) %>% 
  # bind into single data frame
  dplyr::bind_rows(.id = "CHR")
## Warning: One or more parsing issues, see `problems()` for details

5.4 Bind data frames

# Bind data frames
pi_repeat_df = cbind(dat_list$`1000000`,
                     PI_WK = wk_list[["1000000"]]$PI,
                     REPEAT_PROP = bin_intervals$REPEAT_PROP,
                     MEAN_MQ = mean_mq$MEAN_MQ)

5.5 Pairs plot

pairs_plot = GGally::ggpairs(pi_repeat_df, columns = c(5, 7, 8, 9),
                             lower = list(continuous = wrap("points", alpha = 0.2, size = 0.5),
                                          combo = wrap("dot_no_facet", alpha = 0.4)))

plotly::ggplotly(pairs_plot)
## Warning: Can only have one: highlight

## Warning: Can only have one: highlight

## Warning: Can only have one: highlight
<<<<<<< HEAD
=======
>>>>>>> 1f72b2c38317bbf9e22e15671a199f851eaded2e

5.6 Circos

5.6.1 1 Mb

5.6.1.1 Rearrange data frames

df_circos_1Mb = pi_repeat_df
# take `BIN_END` from `bin_intervals` with chromosome end number for final bin
df_circos_1Mb$BIN_END = bin_intervals$BIN_END

5.6.1.2 Plot

out_plot = here::here("docs/plots/nucleotide_diversity", "20211001_circos_1Mb.png")
png(out_plot,
    width = 20,
    height = 20,
    units = "cm",
    res = 500)

# Set parameters
## Decrease cell padding from default c(0.02, 1.00, 0.02, 1.00)
circos.par(cell.padding = c(0, 0, 0, 0),
           track.margin = c(0, 0),
           gap.degree = c(rep(1, nrow(med_chr_lens) - 1), 6))
# Initialize plot
circos.initializeWithIdeogram(med_chr_lens,
                              plotType = c("axis", "labels"),
                              major.by = 1e7,
                              axis.labels.cex = 0.25*par("cex"))

# Add MIKK Pi line
circos.genomicTrack(df_circos_1Mb,
    panel.fun = function(region, value, ...){
  circos.genomicLines(region,
                      value[[2]],
                      col = "#49A379",
                      area = T,
                      border = karyoploteR::darker("#49A379"))
    },
    track.height = 0.1,
    bg.border = NA,
    ylim = c(0, 0.021))

circos.yaxis(side = "right",
           at = c(.01, .02),
           labels.cex = 0.25*par("cex"),
           tick.length = 2
           )

circos.text(0, 0.01,
        labels = expression(paste("MIKK (", pi, ")", sep = "")),
        sector.index = "1",
        facing = "clockwise",
        adj = c(.5, 0),
        cex = 0.4*par("cex"))  
## Note: 1 point is out of plotting region in sector '1', track '2'.
# Add wild Kiyosu line
circos.genomicTrack(df_circos_1Mb,
    panel.fun = function(region, value, ...){
  circos.genomicLines(region,
                      value[[4]],
                      col = "#7A306C",
                      area = T,
                      border = karyoploteR::darker("#8A4F7D"))
    },
    track.height = 0.1,
    bg.border = NA,
    ylim = c(0, 0.021))

circos.yaxis(side = "right",
           at = c(.01, .02),
           labels.cex = 0.25*par("cex"),
           tick.length = 2
           )

circos.text(0, 0.01,
        labels = expression(paste("Wild\nKiyosu (", pi, ")", sep = "")),
        sector.index = "1",
        facing = "clockwise",
        adj = c(.5, 0),
        cex = 0.4*par("cex"))  
## Note: 1 point is out of plotting region in sector '1', track '3'.
# Add repeat content
circos.genomicTrack(df_circos_1Mb,
  panel.fun = function(region, value, ...) {
    circos.genomicLines(region,
                        value[[5]],
                        type = "h",
                        col = "#0C1B33",
                        cex = 0.05,
                        baseline = 0)
  },
  track.height = 0.1,
  ylim = c(0,0.5),
  bg.border = NA)

circos.yaxis(side = "right",
           at = c(0, .5, 1),
           labels.cex = 0.25*par("cex"),
           tick.length = 5
           )

circos.text(0, 0.25,
        labels = "Repeat\ncontent",
        sector.index = "1",
        facing = "clockwise",
        adj = c(.5, 0),
        cex = 0.4*par("cex")) 
## Note: 1 point is out of plotting region in sector '1', track '4'.
# Add mean mapping quality
circos.genomicTrack(df_circos_1Mb,
  panel.fun = function(region, value, ...) {
    circos.genomicLines(region,
                        value[[6]],
                        type = "h",
                        col = "#FF6978",
                        cex = 0.05,
                        baseline = 20)
  },
  track.height = 0.1,
  ylim = c(20,65),
  bg.border = NA)

circos.yaxis(side = "right",
           at = c(20, 50),
           labels.cex = 0.25*par("cex"),
           tick.length = 5
           )

circos.text(0, 40,
        labels = "Mean MQ",
        sector.index = "1",
        facing = "clockwise",
        adj = c(.5, 0),
        cex = 0.4*par("cex")) 
## Note: 1 point is out of plotting region in sector '1', track '5'.
# Add baseline
#circos.xaxis(h = "bottom",
#             labels = F,
#             major.tick = F)

# Print label in center
text(0, 0, "Nucleotide diversity in\nMIKK and wild Kiyosu medaka,\nrepeat content,\nand mapping quality\nin 1 Mb windows")

circos.clear()

dev.off()
## png 
##   2
knitr::include_graphics(out_plot)

5.6.2 500 Kb

5.6.2.1 Create data frame

5.6.2.1.1 Repeats
# Create GRanges object with bins
bin_length = "500000"

bin_intervals_500 = dat_list[[bin_length]] %>% 
  dplyr::select(CHROM, BIN_START, BIN_END) %>% 
  # split into list by chromosome
  split(., f = .$CHROM)

# Replace END pos of final bin for each chromsome with actual end pos
bin_intervals_500 = lapply(1:length(bin_intervals_500), function(CHR){
  # Get end position for target chromosome
  end_pos = med_chr_lens %>% 
    dplyr::filter(chr == CHR) %>% 
    dplyr::pull(end)
  # Replace final bin end position
  out = bin_intervals_500[[CHR]]
  out$BIN_END[nrow(out)] = end_pos
  
  return(out)
}) %>% 
  dplyr::bind_rows()

# Convert to data frame
bin_intervals_500 = as.data.frame(bin_intervals_500)

# Convert to GRanges
bin_ranges = regioneR::toGRanges(bin_intervals_500)
  
overlaps = GenomicRanges::findOverlaps(bin_ranges, hdrr_covered)

# Split into list by bin
overlaps_list = lapply(unique(overlaps@from), function(BIN){
  out = list()
  # Get indexes of all repeat ranges overlapping the target BIN
  out[["hits"]] = overlaps[overlaps@from == BIN]@to
  # Extract those ranges from `hdrr_ranges`
  out[["range_hits"]] = hdrr_covered[out[["hits"]]]
    # Get number bases covered by each range
  out[["widths"]] = out[["range_hits"]] %>% 
    GenomicRanges::width(.) 
  # Get summed widths
  out[["summed"]] = out[["widths"]] %>% 
    # Get total bases covered in bin
    sum(.)
  
  return(out)
})
  
overlaps_vec = purrr::map(overlaps_list, function(BIN){
  BIN[["summed"]]
}) %>% 
  unlist(.)

# Add as column to `bin_intervals_500`
bin_intervals_500$REPEAT_COV = overlaps_vec

# Caclulate proportion
bin_intervals_500 = bin_intervals_500 %>%
  dplyr::mutate(REPEAT_PROP = REPEAT_COV / (BIN_END - BIN_START + 1))
5.6.2.1.2 MQ
# Bin into 1 Mb intervals
binned_mq_list_500 = purrr::map(mq_list, function(CHR){
  # Set intervals
  intervals = seq(1, max(CHR$POS), by = 500000)
  # add final length
  if (max(intervals) != max(CHR$POS)) {
    intervals = c(intervals, max(CHR$POS))
  }
  # bin
  CHR = CHR %>% 
    dplyr::mutate(BIN = cut(POS,
                            breaks = intervals,
                            labels = F,
                            include.lowest = T))
})

# calculate mean MQ within each bin
mean_mq_500 = purrr::map(binned_mq_list_500, function(CHR){
  CHR %>% 
    # replace Inf with NA
    dplyr::mutate(MQ = dplyr::na_if(MQ, Inf)) %>% 
    # Group by BIN
    dplyr::group_by(BIN) %>% 
    # Calculate mean MQ within each bin
    dplyr::summarise(MEAN_MQ = mean(MQ, na.rm = T))
}) %>% 
  # bind into single data frame
  dplyr::bind_rows(.id = "CHR")
5.6.2.1.3 Final
df_circos_500kb = cbind(dat_list$`500000`,
                        PI_WK = wk_list[["500000"]]$PI,
                        REPEAT_PROP = bin_intervals_500$REPEAT_PROP,
                        MEAN_MQ = mean_mq_500$MEAN_MQ)
# Add bin ends at the end of each chromosome to match real chromosome ends
df_circos_500kb$BIN_END = bin_intervals_500$BIN_END
out_plot = here::here("docs/plots/nucleotide_diversity/20211001_circos_500kb.png")
png(out_plot,
    width = 20,
    height = 20,
    units = "cm",
    res = 500)

# Set parameters
## Decrease cell padding from default c(0.02, 1.00, 0.02, 1.00)
circos.par(cell.padding = c(0, 0, 0, 0),
           track.margin = c(0, 0),
           gap.degree = c(rep(1, nrow(med_chr_lens) - 1), 6))
# Initialize plot
circos.initializeWithIdeogram(med_chr_lens,
                              plotType = c("axis", "labels"),
                              major.by = 1e7,
                              axis.labels.cex = 0.25*par("cex"))

# Add MIKK Pi line
circos.genomicTrack(df_circos_500kb,
    panel.fun = function(region, value, ...){
  circos.genomicLines(region,
                      value[[2]],
                      col = "#49A379",
                      area = T,
                      border = karyoploteR::darker("#49A379"))
    },
    track.height = 0.1,
    bg.border = NA,
    ylim = c(0, 0.023))

circos.yaxis(side = "right",
           at = c(.01, .02),
           labels.cex = 0.25*par("cex"),
           tick.length = 2
           )

circos.text(0, 0.01,
        labels = expression(paste("MIKK (", pi, ")", sep = "")),
        sector.index = "1",
        facing = "clockwise",
        adj = c(.5, 0),
        cex = 0.4*par("cex"))  
## Note: 1 point is out of plotting region in sector '1', track '2'.
# Add wild Kiyosu line
circos.genomicTrack(df_circos_500kb,
    panel.fun = function(region, value, ...){
  circos.genomicLines(region,
                      value[[4]],
                      col = "#7A306C",
                      area = T,
                      border = karyoploteR::darker("#8A4F7D"))
    },
    track.height = 0.1,
    bg.border = NA,
    ylim = c(0, 0.023))

circos.yaxis(side = "right",
           at = c(.01, .02),
           labels.cex = 0.25*par("cex"),
           tick.length = 2
           )

circos.text(0, 0.01,
        labels = expression(paste("Wild\nKiyosu (", pi, ")", sep = "")),
        sector.index = "1",
        facing = "clockwise",
        adj = c(.5, 0),
        cex = 0.4*par("cex"))  
## Note: 1 point is out of plotting region in sector '1', track '3'.
# Add repeat content
circos.genomicTrack(df_circos_500kb,
  panel.fun = function(region, value, ...) {
    circos.genomicLines(region,
                        value[[5]],
                        type = "h",
                        col = "#0C1B33",
                        lwd = 0.4,
                        cex = 0.05,
                        baseline = 0)
  },
  track.height = 0.1,
  ylim = c(0,0.65),
  bg.border = NA)

circos.yaxis(side = "right",
           at = c(0, .5, 1),
           labels.cex = 0.25*par("cex"),
           tick.length = 5
           )

circos.text(0, 0.325,
        labels = "Repeat\ncontent",
        sector.index = "1",
        facing = "clockwise",
        adj = c(.5, 0),
        cex = 0.4*par("cex")) 
## Note: 1 point is out of plotting region in sector '1', track '4'.
# Add mean mapping quality
circos.genomicTrack(df_circos_500kb,
  panel.fun = function(region, value, ...) {
    circos.genomicLines(region,
                        value[[6]],
                        type = "h",
                        col = "#FF6978",
                        lwd = 0.4,
                        cex = 0.05,
                        baseline = 20)
  },
  track.height = 0.07,
  ylim = c(20,65),
  bg.border = NA)

circos.yaxis(side = "right",
           at = c(20, 50),
           labels.cex = 0.25*par("cex"),
           tick.length = 5
           )

circos.text(0, 40,
        labels = "Mean MQ",
        sector.index = "1",
        facing = "clockwise",
        adj = c(.5, 0),
        cex = 0.4*par("cex")) 
## Note: 1 point is out of plotting region in sector '1', track '5'.
# Print label in center
text(0, 0, "Nucleotide diversity in\nMIKK and wild Kiyosu medaka,\nwith repeat content\nand mapping quality\nin 500 kb windows")

circos.clear()

dev.off()
## png 
##   2
knitr::include_graphics(out_plot)

5.6.3 Mean and median Pi

5.6.3.1 63 MIKK samples v 7 wild Kiyosu

# MIKK 
mean(df_circos_500kb$PI)
## [1] 0.003829434
median(df_circos_500kb$PI)
## [1] 0.00329243
# Wild median Pi
mean(df_circos_500kb$PI_WK)
## [1] 0.003685076
median(df_circos_500kb$PI_WK)
## [1] 0.003102805

5.6.3.2 7 MIKK samples v 7 wild Kiyosu

# Read in data
mikk_7 = readr::read_delim("/nfs/research/birney/users/ian/mikk_genome/nucleotide_divergence/mikk/random/500.windowed.pi",
                  delim = "\t",
                  col_types = c("ciiid")) %>% 
  # Remove MT
  dplyr::filter(CHROM != "MT") %>% 
  # Make CHR an integer
  dplyr::mutate(CHROM = as.integer(CHROM)) %>% 
  # Create middle of bin
  dplyr::mutate(BIN_MID = ((BIN_END - BIN_START - 1) / 2) + BIN_START )

# Mean
mean(mikk_7$PI)
## [1] 0.003748531
median(mikk_7$PI)
## [1] 0.003197675

6 Per-individual

6.1 Read in data

6.1.1 MIKK

# Set location of data
in_dir = "/nfs/research/birney/users/ian/mikk_genome/nucleotide_divergence/mikk/per_sample"

in_files = list.files(in_dir, full.names = T)
mikk_list = lapply(in_files, function(IN_FILE) {
  # Read in 
  readr::read_delim(IN_FILE,
                    delim = "\t",
                    col_types = c("ciiid")) %>% 
    # Remove MT
    dplyr::filter(CHROM != "MT") %>% 
    # Make CHR an integer
    dplyr::mutate(CHROM = as.integer(CHROM)) %>% 
    # Create middle of bin
    dplyr::mutate(BIN_MID = ((BIN_END - BIN_START - 1) / 2) + BIN_START )
})
names(mikk_list) = basename(in_files) %>%
  str_remove(".windowed.pi")

# reorder
ordered_lines = tibble::tibble("LINE" = names(mikk_list)) %>% 
  tidyr::separate(col = LINE, into = c("LINE", "SIB", "EXTRA"), sep = "_") %>% 
  dplyr::mutate(LINE = as.integer(LINE)) %>% 
  dplyr::arrange(LINE) %>% 
  tidyr::unite(col = "ORIGINAL", sep = "_", na.rm = T) %>% 
  dplyr::pull()
<<<<<<< HEAD
## Warning: Expected 3 pieces. Missing pieces filled with `NA` in 62 rows [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, ...].
=======
## Warning: Expected 3 pieces. Missing pieces filled with `NA` in 62 rows [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16,
## 17, 18, 19, 20, 21, ...].
>>>>>>> 1f72b2c38317bbf9e22e15671a199f851eaded2e
mikk_list = mikk_list[order(match(names(mikk_list), ordered_lines))]

# Bind rows
mikk_df = mikk_list %>% 
  dplyr::bind_rows(.id = "LINE") %>% 
  # factor LINE to order
  dplyr::mutate(LINE = factor(LINE, levels = names(mikk_list)))

6.1.2 Wild

# Set location of data
in_dir = "/nfs/research/birney/users/ian/mikk_genome/nucleotide_divergence/wild/per_sample"

in_files = list.files(in_dir, full.names = T)
wild_list = lapply(in_files, function(IN_FILE) {
  # Read in 
  readr::read_delim(IN_FILE,
                    delim = "\t",
                    col_types = c("ciiid")) %>% 
    # Remove MT
    dplyr::filter(CHROM != "MT") %>% 
    # Make CHR an integer
    dplyr::mutate(CHROM = as.integer(CHROM)) %>% 
    # Create middle of bin
    dplyr::mutate(BIN_MID = ((BIN_END - BIN_START - 1) / 2) + BIN_START )
})
names(wild_list) = basename(in_files) %>%
  str_remove(".windowed.pi")

# Bind rows
wild_df = wild_list %>% 
  dplyr::bind_rows(.id = "LINE")

6.1.3 Combine

pi_df = list("MIKK" = mikk_df,
             "WILD" = wild_df) %>% 
  dplyr::bind_rows(.id = "POPULATION")

6.1.4 Boxplot

# Create palette
pal = c("#49A379", "#8A4F7D")
names(pal) = c("MIKK", "WILD")

mikk_wild_boxplot_no_filter = pi_df %>% 
  ggplot() +
    geom_violin(aes(POPULATION, log10(PI), colour = POPULATION, fill = POPULATION)) +
    geom_boxplot(aes(POPULATION, log10(PI), colour = POPULATION, fill = POPULATION), width = 0.1) +
    theme_bw() +
    scale_fill_manual(name = "Population", values = pal) +
    scale_colour_manual(name = "Population", values = darker(pal, 80)) +
    ylab(expression(paste(log[10], "(", pi, ")", sep = ""))) +
    ggtitle("Nucleotide diversity in 500 kb bins (MAPQ >= 50)")

mikk_wild_boxplot_no_filter

ggsave(here::here("docs/plots/nucleotide_diversity/20211006_mikk_wild_boxplot_no_filter.png"),
       plot = mikk_wild_boxplot_no_filter,
       device = "png",
       width = 8,
       height = 6,
       units = "in",
       dpi = 400)

6.1.5 All chromosomes

purrr::map(1:24, function(CHR){
    # Create plot
    plot_df = mikk_df %>% 
      # Filter for target CHROM
      dplyr::filter(CHROM == CHR) %>% 
      # Create Mb column
      dplyr::mutate(Mb = (BIN_START - 1) / 1e6)
    out_plot = plot_df %>% 
      ggplot() +
        geom_col(aes(Mb, PI, fill = PI)) +
        facet_grid(rows = vars(LINE), cols = vars(CHROM)) +
        theme_bw() +
        theme(text = element_text(size = 5)) +
        ylim(c(0, max(mikk_df$PI))) +
        xlab("500 kb window start position (Mb)") +
        ylab(expression(paste("Nucleotide diversity (", pi, ")", sep = ""))) +
        ggtitle(paste("Chromosome ", CHR, sep = "")) +
        scale_fill_viridis(name = expression(pi), limits = c(0,max(mikk_df$PI)))
        
    
    # Adjust width dimensions of plot based on length of chromosome
    w_dim = mikk_df %>% 
      dplyr::filter(CHROM == CHR) %>% 
      dplyr::mutate(Mb = (BIN_START - 1) / 1e6) %>% 
      dplyr::pull(Mb) %>% 
      max(.)
    w_dim = w_dim * 0.26
    # Save
    ggsave(here::here("docs/plots/nucleotide_diversity/20211006_pi_per_chr", paste(CHR, ".png", sep = "")),
           plot = out_plot,
           device = "png",
           width = w_dim,
           height = 20,
           units = "in",
           dpi = 400)
})
knitr::include_graphics(here::here("docs/plots/nucleotide_diversity/20211006_pi_per_chr/1.png"))

knitr::include_graphics(here::here("docs/plots/nucleotide_diversity/20211006_pi_per_chr/2.png"))

knitr::include_graphics(here::here("docs/plots/nucleotide_diversity/20211006_pi_per_chr/22.png"))

6.1.6 chr1 and 22 for supplementary figures

target_chrs = c(1, 22)
# Create plot
final_plot_df = mikk_df %>% 
  # Filter for target CHROM
  dplyr::filter(CHROM %in% target_chrs) %>% 
  # Create Mb column
  dplyr::mutate(Mb = (BIN_START - 1) / 1e6)
out_plot = final_plot_df %>% 
  ggplot() +
    geom_col(aes(Mb, PI, fill = PI)) +
    facet_grid(rows = vars(LINE), cols = vars(CHROM)) +
    theme_bw() +
    theme(text = element_text(size = 5)) +
    ylim(c(0, max(mikk_df$PI))) +
    xlab("500 kb window start position (Mb)") +
    ylab(expression(paste("Nucleotide diversity (", pi, ")", sep = ""))) +
    scale_fill_viridis(name = expression(pi), limits = c(0,max(mikk_df$PI)))

out_plot 

# Save
ggsave(here::here("docs/plots/nucleotide_diversity/20211013_chrs_1_22.png"),
       plot = out_plot,
       device = "png",
       width = 15,
       height = 20,
       units = "in",
       dpi = 400)
knitr::include_graphics(here::here("docs/plots/nucleotide_diversity/20211006_pi_per_chr/1.png"))

knitr::include_graphics(here::here("docs/plots/nucleotide_diversity/20211006_pi_per_chr/2.png"))

knitr::include_graphics(here::here("docs/plots/nucleotide_diversity/20211006_pi_per_chr/22.png"))

6.2 Investigate QC stats for sample MIKK10_1 to determine appropriate cutoffs

qc_file = "/hps/nobackup/birney/users/ian/mikk_genome/qc_stats/10_1.csv"

qc_df = readr::read_csv(qc_file,
                        col_names = c("CHROM", "POS", "DP", "MQ", "QD", "GQ"),
                        col_types = c("ciiddi")) %>% 
  # Filter for non-missing GQ
  dplyr::filter(complete.cases(GQ)) %>% 
  # Filter out MT
  dplyr::filter(CHROM != "MT") %>% 
  # Re-class CHROM
  dplyr::mutate(CHROM = factor(CHROM, levels = 1:24))
## Warning: One or more parsing issues, see `problems()` for details

6.2.1 Plot

qc_pairs = qc_df %>%
  # take sample to prevent over-plotting
  dplyr::slice_sample(n = 1e5) %>% 
  # create log10 for `DP`
  dplyr::mutate(LOG_10_DP = log10(DP)) %>% 
  GGally::ggpairs(.,
                  columns = c(7, 4, 5, 6),
                  lower = list(continuous = wrap("points", alpha = 0.2, size = 0.5),
                               combo = wrap("dot_no_facet", alpha = 0.4)))

qc_pairs
<<<<<<< HEAD
## plot: [1,1] [=======>-----------------------------------------------------------------------------------------------------------------] 6% est: 0s
## plot: [1,2] [==============>----------------------------------------------------------------------------------------------------------] 12% est: 1s
## plot: [1,3] [======================>--------------------------------------------------------------------------------------------------] 19% est: 1s
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, : Removed 11 rows containing missing values
## plot: [1,4] [=============================>-------------------------------------------------------------------------------------------] 25% est: 1s
## plot: [2,1] [=====================================>-----------------------------------------------------------------------------------] 31% est: 1s
## plot: [2,2] [============================================>----------------------------------------------------------------------------] 38% est: 1s
## plot: [2,3] [====================================================>--------------------------------------------------------------------] 44% est: 1s
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, : Removed 11 rows containing missing values
## plot: [2,4] [===========================================================>-------------------------------------------------------------] 50% est: 1s
## plot: [3,1] [===================================================================>-----------------------------------------------------] 56% est: 1s
## Warning: Removed 11 rows containing missing values (geom_point).
## plot: [3,2] [===========================================================================>---------------------------------------------] 62% est: 1s
## Warning: Removed 11 rows containing missing values (geom_point).
## plot: [3,3] [==================================================================================>--------------------------------------] 69% est: 1s
## Warning: Removed 11 rows containing non-finite values (stat_density).
## plot: [3,4] [==========================================================================================>------------------------------] 75% est: 0s
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, : Removed 11 rows containing missing values
## plot: [4,1] [=================================================================================================>-----------------------] 81% est: 0s
## plot: [4,2] [=========================================================================================================>---------------] 88% est: 0s
## plot: [4,3] [================================================================================================================>--------] 94% est: 0s
## Warning: Removed 11 rows containing missing values (geom_point).
## plot: [4,4] [=========================================================================================================================]100% est: 0s
=======
## plot: [1,1] [=====>---------------------------------------------------------------------------------------] 6% est: 0s
## plot: [1,2] [===========>---------------------------------------------------------------------------------] 12% est: 1s
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, : Removing 1 row that contained a missing value
## plot: [1,3] [================>----------------------------------------------------------------------------] 19% est: 1s
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, : Removed 2 rows containing missing values
## plot: [1,4] [======================>----------------------------------------------------------------------] 25% est: 1s
## plot: [2,1] [============================>----------------------------------------------------------------] 31% est: 1s
## Warning: Removed 1 rows containing missing values (geom_point).
## plot: [2,2] [==================================>----------------------------------------------------------] 38% est: 1s
## Warning: Removed 1 rows containing non-finite values (stat_density).
## plot: [2,3] [========================================>----------------------------------------------------] 44% est: 1s
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, : Removed 2 rows containing missing values
## plot: [2,4] [=============================================>-----------------------------------------------] 50% est: 1s
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, : Removing 1 row that contained a missing value
## plot: [3,1] [===================================================>-----------------------------------------] 56% est: 1s
## Warning: Removed 2 rows containing missing values (geom_point).
## plot: [3,2] [=========================================================>-----------------------------------] 62% est: 1s
## Warning: Removed 2 rows containing missing values (geom_point).
## plot: [3,3] [===============================================================>-----------------------------] 69% est: 1s
## Warning: Removed 2 rows containing non-finite values (stat_density).
## plot: [3,4] [=====================================================================>-----------------------] 75% est: 1s
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, : Removed 2 rows containing missing values
## plot: [4,1] [===========================================================================>-----------------] 81% est: 0s
## plot: [4,2] [================================================================================>------------] 88% est: 0s
## Warning: Removed 1 rows containing missing values (geom_point).
## plot: [4,3] [======================================================================================>------] 94% est: 0s
## Warning: Removed 2 rows containing missing values (geom_point).
## plot: [4,4] [=============================================================================================]100% est: 0s
>>>>>>> 1f72b2c38317bbf9e22e15671a199f851eaded2e

ggsave(here::here("docs/plots/nucleotide_diversity/20211006_qc_pairs.png"),
       plot = qc_pairs,
       device = "png",
       width = 10,
       height = 6,
       units = "in",
       dpi = 400)

How many calls have DP < x?

# Total variants
nrow(qc_df)
## [1] 27485882
# Number of variants with DP < x
length(which(qc_df$DP < 10))
## [1] 151
length(which(qc_df$DP < 20))
## [1] 723
length(which(qc_df$DP < 30))
## [1] 1823
length(which(qc_df$DP < 40))
## [1] 3378

So few!

Try GQ >= 40 & DP >= 40 & MQ >= 50.

6.3 Read in nucleotide diversity for filtered variants

6.3.1 MIKK

<<<<<<< HEAD
# Set location of data
in_dir = "/nfs/research/birney/users/ian/mikk_genome/nucleotide_divergence/mikk/filtered"

in_files_mikk_filt = list.files(in_dir, full.names = T)
mikk_list_filt = lapply(in_files_mikk_filt, function(IN_FILE) {
  # Read in 
  readr::read_delim(IN_FILE,
                    delim = "\t",
                    col_types = c("ciiid")) %>% 
    # Remove MT
    dplyr::filter(CHROM != "MT") %>% 
    # Make CHR an integer
    dplyr::mutate(CHROM = as.integer(CHROM)) %>% 
    # Create middle of bin
    dplyr::mutate(BIN_MID = ((BIN_END - BIN_START - 1) / 2) + BIN_START )
})
names(mikk_list_filt) = basename(in_files_mikk_filt) %>%
  str_remove(".windowed.pi")

# reorder
ordered_lines = tibble::tibble("LINE" = names(mikk_list_filt)) %>% 
  tidyr::separate(col = LINE, into = c("LINE", "SIB", "EXTRA"), sep = "_") %>% 
  dplyr::mutate(LINE = as.integer(LINE)) %>% 
  dplyr::arrange(LINE) %>% 
  tidyr::unite(col = "ORIGINAL", sep = "_", na.rm = T) %>% 
  dplyr::pull()
## Warning: Expected 3 pieces. Missing pieces filled with `NA` in 62 rows [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, ...].
mikk_list_filt = mikk_list_filt[order(match(names(mikk_list_filt), ordered_lines))]

# Bind rows
mikk_df_filt = mikk_list_filt %>% 
  dplyr::bind_rows(.id = "LINE") %>% 
  # factor LINE to order
  dplyr::mutate(LINE = factor(LINE, levels = names(mikk_list_filt)))
=======
# Set location of data
in_dir = "/nfs/research/birney/users/ian/mikk_genome/nucleotide_divergence/mikk/filtered"

in_files_mikk_filt = list.files(in_dir, full.names = T)
mikk_list_filt = lapply(in_files_mikk_filt, function(IN_FILE) {
  # Read in 
  readr::read_delim(IN_FILE,
                    delim = "\t",
                    col_types = c("ciiid")) %>% 
    # Remove MT
    dplyr::filter(CHROM != "MT") %>% 
    # Make CHR an integer
    dplyr::mutate(CHROM = as.integer(CHROM)) %>% 
    # Create middle of bin
    dplyr::mutate(BIN_MID = ((BIN_END - BIN_START - 1) / 2) + BIN_START )
})
names(mikk_list_filt) = basename(in_files_mikk_filt) %>%
  str_remove(".windowed.pi")

# reorder
ordered_lines = tibble::tibble("LINE" = names(mikk_list_filt)) %>% 
  tidyr::separate(col = LINE, into = c("LINE", "SIB", "EXTRA"), sep = "_") %>% 
  dplyr::mutate(LINE = as.integer(LINE)) %>% 
  dplyr::arrange(LINE) %>% 
  tidyr::unite(col = "ORIGINAL", sep = "_", na.rm = T) %>% 
  dplyr::pull()
## Warning: Expected 3 pieces. Missing pieces filled with `NA` in 62 rows [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16,
## 17, 18, 19, 20, 21, ...].
mikk_list_filt = mikk_list_filt[order(match(names(mikk_list_filt), ordered_lines))]

# Bind rows
mikk_df_filt = mikk_list_filt %>% 
  dplyr::bind_rows(.id = "LINE") %>% 
  # factor LINE to order
  dplyr::mutate(LINE = factor(LINE, levels = names(mikk_list_filt)))
>>>>>>> 1f72b2c38317bbf9e22e15671a199f851eaded2e

6.3.2 Wild

# Set location of data
in_dir = "/nfs/research/birney/users/ian/mikk_genome/nucleotide_divergence/wild/filtered"

in_files_wild_filt = list.files(in_dir, full.names = T)
wild_list_filt = lapply(in_files_wild_filt, function(IN_FILE) {
  # Read in 
  readr::read_delim(IN_FILE,
                    delim = "\t",
                    col_types = c("ciiid")) %>% 
    # Remove MT
    dplyr::filter(CHROM != "MT") %>% 
    # Make CHR an integer
    dplyr::mutate(CHROM = as.integer(CHROM)) %>% 
    # Create middle of bin
    dplyr::mutate(BIN_MID = ((BIN_END - BIN_START - 1) / 2) + BIN_START )
})
names(wild_list_filt) = basename(in_files_wild_filt) %>%
  str_remove(".windowed.pi")

# Bind rows
wild_df_filt = wild_list_filt %>% 
  dplyr::bind_rows(.id = "LINE")

6.3.3 Combine

pi_df_filt = list("MIKK" = mikk_df_filt,
                  "WILD" = wild_df_filt) %>% 
  dplyr::bind_rows(.id = "POPULATION")

6.3.4 All chromosomes

purrr::map(1:24, function(CHR){
    # Create plot
    plot_df = mikk_df_filt %>% 
      # Filter for target CHROM
      dplyr::filter(CHROM == CHR) %>% 
      # Create Mb column
      dplyr::mutate(Mb = (BIN_START - 1) / 1e6)
    
    out_plot = plot_df %>% 
      ggplot() +
        geom_col(aes(Mb, PI, fill = PI)) +
        facet_grid(rows = vars(LINE), cols = vars(CHROM)) +
        theme_bw() +
        theme(text = element_text(size = 5)) +
        ylim(c(0, max(mikk_df$PI))) +
        xlab("500 kb window start position (Mb)") +
        ylab(expression(paste("Nucleotide diversity (", pi, ")", sep = ""))) +
        ggtitle(paste("Chromosome ", CHR, sep = "")) +
        scale_fill_viridis(name = expression(pi), limits = c(0,max(mikk_df$PI)))
        
    
    # Adjust width dimensions of plot based on length of chromosome
    w_dim = mikk_df_filt %>% 
      dplyr::filter(CHROM == CHR) %>% 
      dplyr::mutate(Mb = (BIN_START - 1) / 1e6) %>% 
      dplyr::pull(Mb) %>% 
      max(.)
    w_dim = w_dim * 0.26
    # Save
    ggsave(here::here("docs/plots/nucleotide_diversity/20211006_pi_per_chr_filtered", paste(CHR, ".png", sep = "")),
           plot = out_plot,
           device = "png",
           width = w_dim,
           height = 20,
           units = "in",
           dpi = 400)
})
knitr::include_graphics(here::here("docs/plots/nucleotide_diversity/20211006_pi_per_chr_filtered/1.png"))
knitr::include_graphics(here::here("docs/plots/nucleotide_diversity/20211006_pi_per_chr_filtered/22.png"))

6.3.5 Boxplots

# source `darker` function
source("https://gist.githubusercontent.com/brettellebi/c5015ee666cdf8d9f7e25fa3c8063c99/raw/91e601f82da6c614b4983d8afc4ef399fa58ed4b/karyoploteR_lighter_darker.R")

# What is the median for MIKK v WILD?
pi_df_filt %>% 
  dplyr::group_by(POPULATION) %>% 
  dplyr::summarise(MEAN_PI = mean(PI, na.rm = T),
                   MEDIAN_PI = median(PI, na.rm = T))
## # A tibble: 2 × 3
##   POPULATION  MEAN_PI MEDIAN_PI
##   <chr>         <dbl>     <dbl>
## 1 MIKK       0.000298  0.000082
## 2 WILD       0.000253  0.00008
# Together
mikk_wild_boxplot = pi_df_filt %>% 
  ggplot() +
    geom_violin(aes(POPULATION, log10(PI), colour = POPULATION, fill = POPULATION)) +
    geom_boxplot(aes(POPULATION, log10(PI), colour = POPULATION, fill = POPULATION), width = 0.1) +
    theme_bw() +
    scale_fill_manual(name = "Population", values = pal) +
    scale_colour_manual(name = "Population", values = darker(pal, 80)) +
    ylab(expression(paste(log[10], "(", pi, ")", sep = ""))) +
    ggtitle("Nucleotide diversity in 500 kb bins (MAPQ >= 50 & GQ >= 40 & DP >= 40 )")

mikk_wild_boxplot

ggsave(here::here("docs/plots/nucleotide_diversity/20211006_mikk_wild_boxplot.png"),
       plot = mikk_wild_boxplot,
       device = "png",
       width = 8,
       height = 6,
       units = "in",
       dpi = 400)

6.3.5.1 Take only 7 MIKK samples

set.seed(13)
# Pull out 7 random MIKK samples
mikk_random_samples = pi_df_filt %>% 
  dplyr::filter(POPULATION == "MIKK") %>% 
  dplyr::distinct(LINE) %>%
  dplyr::slice_sample(n = 7) %>% 
  dplyr::pull(LINE)
  
# Plot
mikk_wild_boxplot_samp = pi_df_filt %>% 
  dplyr::filter(POPULATION == "WILD" | LINE %in% mikk_random_samples) %>% 
  ggplot() +
    geom_violin(aes(POPULATION, log10(PI), colour = POPULATION, fill = POPULATION)) +
    geom_boxplot(aes(POPULATION, log10(PI), colour = POPULATION, fill = POPULATION), width = 0.1) +
    theme_bw() +
    scale_fill_manual(name = "Population", values = pal) +
    scale_colour_manual(name = "Population", values = darker(pal, 80)) +
    ylab(expression(paste(log[10], "(", pi, ")", sep = ""))) +
    ggtitle("Nucleotide diversity in 500 kb bins (MAPQ >= 50 & GQ >= 40 & DP >= 40 )\n7 MIKK lines & 7 wild Kiyosu samples")

mikk_wild_boxplot_samp

ggsave(here::here("docs/plots/nucleotide_diversity/20211011_mikk_wild_boxplot_sampled.png"),
       plot = mikk_wild_boxplot_samp,
       device = "png",
       width = 8,
       height = 6,
       units = "in",
       dpi = 400)

6.3.5.2 Faceted

mikk_wild_boxplot_facet = pi_df_filt %>% 
  ggplot() +
    geom_violin(aes(POPULATION, log10(PI), colour = POPULATION, fill = POPULATION)) +
    geom_boxplot(aes(POPULATION, log10(PI), colour = POPULATION, fill = POPULATION), width = 0.05) +
    theme_bw() +
    scale_fill_manual(name = "Population", values = pal) +
    scale_colour_manual(name = "Population", values = darker(pal, 80)) +
    ylab(expression(paste(log[10], "(", pi, ")", sep = ""))) +
    facet_wrap(vars(CHROM), nrow = 4, ncol = 6) +
    guides(colour = "none", fill = "none") +
    ggtitle("Nucleotide diversity in 500 kb bins (MAPQ >= 50 & GQ >= 40 & DP >= 40 )")

mikk_wild_boxplot_facet

ggsave(here::here("docs/plots/nucleotide_diversity/20211006_mikk_wild_boxplot_facet.png"),
       plot = mikk_wild_boxplot_facet,
       device = "png",
       width = 8,
       height = 6,
       units = "in",
       dpi = 400)